Final Stages of Cytokinesis and Midbody Ring Formation Are Controlled by BRUCE

نویسندگان

  • Christian Pohl
  • Stefan Jentsch
چکیده

Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of abscission. During cytokinesis, BRUCE moves from the vesicular system to the midbody ring and serves as a platform for the membrane delivery machinery and mitotic regulators. Depletion of BRUCE in cell cultures causes defective abscission and cytokinesis-associated apoptosis, accompanied by a block of vesicular targeting and defective formation of the midbody and the midbody ring. Notably, ubiquitin relocalizes from midbody microtubules to the midbody ring during cytokinesis, and depletion of BRUCE disrupts this process. We propose that BRUCE coordinates multiple steps required for abscission and that ubiquitylation may be a crucial trigger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules

Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring-derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the...

متن کامل

BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC.

Cytokinesis is the critical final step in cell division. BRCA2 disruption during cytokinesis is associated with chromosome instability, but mechanistic information is lacking that could be used to prevent cancer cell division. In this study, we report that BRCA2 phosphorylation by the mitotic polo-like kinase (PLK1) governs the localization of BRCA2 to the Flemming body at the central midbody, ...

متن کامل

Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission

During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation o...

متن کامل

ESCRT Function in Cytokinesis: Location, Dynamics and Regulation by Mitotic Kinases

Mammalian cytokinesis proceeds by constriction of an actomyosin ring and furrow ingression, resulting in the formation of the midbody bridge connecting two daughter cells. At the centre of the midbody resides the Flemming body, a dense proteinaceous ring surrounding the interlocking ends of anti-parallel microtubule arrays. Abscission, the terminal step of cytokinesis, occurs near the Flemming ...

متن کامل

The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55.

Failure of cytokinesis results in tetraploidy and can increase the genomic instability frequently observed in cancer. The peptidyl-prolyl isomerase Pin1, which is deregulated in many tumors, regulates several processes, including cell cycle progression. Here, we show a novel role for Pin1 in cytokinesis. Pin1 knockout mouse embryonic fibroblasts show a cytokinesis delay, and depletion of Pin1 f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2008